Principal value

Results: 874



#Item
291Aberfoyle Park High School / South Australia / States and territories of Australia / Aberfoyle Park /  South Australia / NAPLAN / Out of School Care and Recreation

THE HUB NEWS 2015 We value Relationships and Friendship, Responsibility and Respect Julie Gallaher, Principal TERM 1 - WEEK 10 Sarah Magnusson, Deputy Principal

Add to Reading List

Source URL: www.ahs.sa.edu.au

Language: English - Date: 2015-04-02 00:37:47
292Transformers / Transformer / Load profile / Hysteresis / Polymer / Distribution transformer / Insulator / R-value / Electromagnetism / Physics / Electrical engineering

Principal Research Results Lifetime Evaluation for Distribution Transformers with Over Loaded Condition Background Due to a recent cost reduction request and equipment investment suppression in the electric utility, mor

Add to Reading List

Source URL: criepi.denken.or.jp

Language: English - Date: 2008-09-29 03:24:03
293Singular value decomposition / Multivariate statistics / Numerical linear algebra / Matrix theory / Principal component analysis / Rank / Latent semantic analysis / Matrix / QR decomposition / Algebra / Linear algebra / Mathematics

Command Line Interface, Stochastic SVD∗ Contents 1 Background information 1.1

Add to Reading List

Source URL: mahout.apache.org

Language: English - Date: 2014-03-08 01:22:19
294Multivariate statistics / Singular value decomposition / Abstract algebra / Matrix theory / Principal component analysis / Eigenvalues and eigenvectors / Factor analysis / Rotation matrix / Orthonormality / Algebra / Mathematics / Linear algebra

2.13 Rotated principal component analysis [Book, Sect[removed]Fig.: PCA applied to a dataset composed of (a) 1 cluster, (b) 2 clusters, (c) and (d) 4 clusters. In (c), an orthonormal rotation ˜j , (j =1, 2). and (d) an ob

Add to Reading List

Source URL: www.ocgy.ubc.ca

Language: English - Date: 2013-09-03 18:40:48
295Data analysis / Singular value decomposition / Covariance and correlation / Principal component analysis / Linear algebra / Eigenvalues and eigenvectors / Covariance matrix / Matrix / Variance / Statistics / Algebra / Multivariate statistics

694 Journal of the American Statistical Association, June 2009 Discussion Boaz NADLER

Add to Reading List

Source URL: www.wisdom.weizmann.ac.il

Language: English - Date: 2009-06-16 05:02:26
296Linear algebra / Multivariate statistics / Statistical classification / Singular value decomposition / Abstract algebra / Principal component analysis / Tikhonov regularization / Linear discriminant analysis / Large margin nearest neighbor / Algebra / Statistics / Mathematics

C:/Papers/SAM_MDL/MDL.dvi

Add to Reading List

Source URL: www.research.ibm.com

Language: English - Date: 2012-08-13 11:38:52
297Data analysis / Singular value decomposition / Covariance and correlation / Multivariate statistics / Linear algebra / Principal component analysis / Covariance / Eigenvalues and eigenvectors / Variance / Statistics / Algebra / Mathematics

Ch.2 Principal component analysis (PCA) Books on PCA by Jolliffe (2002), Preisendorfer[removed]PCA also called empirical orthogonal function (EOF) analysis. 2.1 Geometric approach to PCA [Book, Sect[removed]Dataset with

Add to Reading List

Source URL: www.ocgy.ubc.ca

Language: English - Date: 2013-08-25 01:58:52
298Multivariate statistics / Covariance and correlation / Paleoclimatology / Data analysis / Principal component analysis / Singular value decomposition / Climatology / El Niño-Southern Oscillation / Correlation and dependence / Atmospheric sciences / Statistics / Meteorology

CONTENTS Page CHAPTER 1: INTRODUCTION.

Add to Reading List

Source URL: www.cru.uea.ac.uk

Language: English - Date: 2009-12-22 04:44:02
299Matrix theory / Singular value decomposition / Abstract algebra / Data analysis / Eigenvalues and eigenvectors / Principal component analysis / Matrix / Covariance matrix / Vector space / Algebra / Linear algebra / Mathematics

Principal component analysis (PCA) 2.6 Scaling the PCs and eigenvectors [Book, Sect[removed]Various options for scaling the PCs {aj (t)} and the eigenvectors {ej }. One can introduce an arbitrary scale factor α, aj0 =

Add to Reading List

Source URL: www.ocgy.ubc.ca

Language: English - Date: 2013-08-20 18:42:54
300Singular value decomposition / Matrices / Mathematics / Trigonometry / Rotation matrix / Linear algebra / Data analysis / Principal component analysis

Chapter 2 lecture questions Q1: “Prove that C is a real, symmetric, positive semi-definite matrix” requires us to prove that for any vector v 6= 0, it follows that vT Cv ≥ 0. Proof: vT Cv = vT E[(y − y)(y − y)T

Add to Reading List

Source URL: www.ocgy.ubc.ca

Language: English - Date: 2013-10-04 14:07:27
UPDATE